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a LMFA, UMR CNRS 5509, Ecole Centrale de Lyon, Université de Lyon I, INSA Lyon, 36 avenue Guy de Collongue,
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Abstract

A large eddy simulation (LES) coupled with a Lagrangian stochastic model has been applied to the study of droplet
dispersion in a turbulent boundary layer. Droplets are tracked in a Lagrangian way. The velocity of the fluid particle along
the droplet trajectory is considered to have a large-scale part and a small-scale part given by a modified three-dimensional
Langevin model using the filtered subgrid scale (SGS) statistics. An appropriate Lagrangian correlation timescale is con-
sidered in order to include the influences of gravity and inertia. Two-way coupling is also taken into account. The inter-
droplet collision has been introduced as the main mechanism of secondary breakup. A stochastic model for breakup has
been generalized for coalescence simulation, thereby two phenomena, coalescence and breakup are simulated in the frame-
work of a single stochastic model. The parameters of this model, selectively for coalescence and for breakup, are computed
dynamically by relating them to the local resolved properties of the dispersed phase compared to the main fluid. The model
is validated by comparison with an agglomeration model and with experimental results on secondary breakup. The LES
coupled with Lagrangian particle tracking and the model for droplet coalescence and breakup is applied to the study of the
atmospheric dispersion of wet cooling tower plumes. The simulations are done for different droplet size distributions and
volume fractions. We focused on the influence of these parameters on mean concentration, concentration variance and
mass flux profiles.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last decades, a good understanding of atmospheric dispersion has been achieved in neutral
boundary layers as a result of numerical, laboratory and field investigations. Previous studies have focused
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on passive (Sykes and Henn, 1992), reactive (Sykes et al., 1992) and buoyant scalar dispersion. However,
industrial stack emissions contain also particulate matter, as well as inertial particles and droplets. The aim
of this research is the modeling and simulation of dispersion of droplets from elevated sources in atmospheric
turbulent boundary layers. We will concentrate on the dynamical aspects, precisely on the impact of turbu-
lence on the statistics of the dispersed phase. Interest will be drawn on the effect of turbulent coalescence
on the evolution of the droplet size distribution and its impact on plume dispersion. In this study an Eule-
rian–Lagrangian approach is adopted. A LES with the dynamic subgrid scale model of Germano et al.
(1991) is used to resolve the velocity field. The dispersed phase is computed with Lagrangian particle tracking.
In addition to this, the LES is coupled with a Lagrangian stochastic model in order to take into account the
SGS motion of particles. Finally, the coalescence and breakup of droplets are computed by a stochastic
breakup/coalescence model based on the breakup model of Gorokhovski and Saveliev (2003) and its exten-
sion, developed in Apte et al. (2003). In our computations, two main distinctions from these works exist:
(i) the formalism of breakup description is extended to the coalescence process; (ii) the main mechanism of
droplet breakup is associated with inter-droplet collisions.

Since the pioneering work of Deardorff (1970), LES has become a well-established tool for the study of tur-
bulent flows (Meneveau and Katz, 2000), the transport of passive scalars (Xie et al., 2004), the dispersion of
reactive plumes (Meeder and Nieuwstadt, 2000) as well as the computation of particle-laden flows in a variety
of conditions (Wang and Squires, 1996a; Fukagata et al., 1998; Shao and Li, 1999). The feasibility of LES to
study preferential concentration of particles by turbulence (Wang and Squires, 1996b) and to compute flows
with two-way momentum coupling (Boivin et al., 1998) has been reported. However, since relevant physical
processes occur at unresolved scales (chemical reactions, droplet collisions and interactions, evaporation), the
effect of the small scales on particle dispersion, motion or deposition must be modeled separately. The long
term interest for using LES compared to Reynold averaged Navier–Stokes (RANS) approach is to obtain
the instantaneous and local flow field structure which is necessary when passive scalars and chemical reactions
play an important role. RANS cannot provide instantaneous solid particle or reactive scalar concentration
peaks. Furthermore, the long term objective of this study is to apply the developed modeling tools to atmo-
spheric dispersion as in Xie et al. (2004) and Meeder and Nieuwstadt (2000).

The Lagrangian stochastic approach has initially been proposed (Durbin, 1983; Thomson, 1987) in its nat-
ural context for modeling and prediction of turbulent diffusion and dispersion. In the framework of statistical
RANS (Reynolds-averaged Navier–Stokes) description of turbulence, various random walk models for the
diffusion of fluid particles and the dispersion of solid particles in two-phase flows have been proposed since
then (Stock, 1996; Pozorski and Minier, 1998; Mashayek and Pandya, 2003, and references therein). The
RANS computation with atomizing spray, modeled stochastically, was proposed in Gorokhovski (2001).

In this paper, the stochastic process for breakup was constructed as evolution towards the statistics when
parent drop counts are no more correlated with product droplet counts. In our paper, a Lagrangian stochastic
model is introduced in order to reconstruct the residual (subgrid scale) fluid velocity along particle trajectories.
The stochastic model is written in terms of SGS statistics at a mesh level (Vinkovic et al., 2005a). In addition to
this, an appropriate Lagrangian correlation timescale is considered in order to include the influences of gravity
and inertia of droplets (Aguirre et al., 2004). In Aguirre et al. (2004) the correlation timescale is corrected due
to the crossing trajectory effect (Csanady, 1963). Mainly, this means that the Lagrangian autocorrelation time-
scale is reduced and that the fluid particle at the previous position of the droplet is also tracked. Once the sub-
grid velocity of the fluid along the droplet trajectory reconstructed, droplet interactions are added to the
numerical simulation. Mainly, this approach allows to obtain a complete and instantaneous velocity field con-
taining the interesting turbulence properties such as the instantaneous large-scale turbulence structure move-
ment influencing the timescale correlation and the turbulent kinetic energy.

Droplet coalescence is the process of droplet merging induced by their collision. Coalescence and growth of
aerosol particles subject to a turbulent flow can modify completely the nature of plume dispersion. Turbulent
fluctuations can induce relative motion between neighboring drops causing an enhancement of the collision
rate. Moreover, because the dynamic response of each droplet is a sensitive function of its size and response
time, turbulent coalescence can bias collision statistics causing substantial changes in the shape of the particle
size distribution. When the liquid jet is issued from the injector into a turbulent gas flow, the fragments of
different sizes are detached from the liquid bulk and accelerated by the gas flow and by the turbulent eddies
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in the gas. These fragments undergo secondary breakup. Extensive measurement of airblast atomization in the
liquid have been presented by Lasheras et al. (1998). It has been shown that starting from x/Dg � 10 in down-
stream direction (Dg being the diameter of the gas flow), up to x/Dg � 25–30, the Sauter diameter decreases
significantly. Two physical scenarios of the secondary breakup may be considered in order to explain this
effect: aerodynamic breakup and inter-droplet collisions. If we assume the first scenario, as the main mecha-
nism of secondary breakup, then the droplets would be formed very quickly attaining their maximum stable
size close to the injection region. Since the relative velocity between the gas and the newly produced droplets is
significantly reduced, there will be no decrease in size of produced droplets in the downstream direction. At the
same time, the breakup due to inter-droplet collisions (Georjon and Reitz, 1999) could explain the effect of
significant streamwise decrease of the Sauter diameter. The relative velocity of fragments entrained by turbu-
lence may be significant due to intermittency in the turbulent flow; the spray, in the region close to the injec-
tion, may be dense enough to induce this mechanism.

In the present work, the impact between droplets is a precursor of single coalescence/breakup model.
According to properties of colliding droplets, the outcome of inter-droplet collisions is simulated stochasti-
cally with probabilities of droplet production over a large spectrum of size. Due to the complexity of the inter-
action between droplets, the coalescence and breakup phenomena are considered under scaling symmetry in
variation of mother droplet size (in the case of breakup) or of droplet-collector size (in the case of coalescence).
Based on the work of Kolmogorov (1941), this assumption has been introduced for atomization of liquids by
Gorokhovski and Saveliev (2003). They showed that at high frequency of breakup events, the evolution of the
PDF, in the space of radius, is governed by the special type of Fokker–Planck equation. This equation has
been applied in our stochastic simulation of both breakup and coalescence phenomena, as described in Section
3. The main procedure has been inspired by the work done by Apte et al. (2003). The parameters of the model
are obtained dynamically by relating them to the local resolved properties of the dispersed phase compared to
the main fluid. Within each grid cell, mass conservation is applied. The results of the present model are com-
pared with the model for micro-particle agglomeration of Ho and Sommerfeld (2002) and the experimental
results on secondary breakup of Lasheras et al. (1998).

The LES coupled with the modified Langevin stochastic process at subgrid scales (Gardiner, 1985) and the
model for droplet coalescence and breakup is applied to the study of the atmospheric dispersion of wet cooling
tower plumes. Since we did not find any wind tunnel experiment or in-situ measurements of droplet dispersion
in an atmospheric turbulent boundary layer, we compared the numerical results with the experiment on pas-
sive scalar plume dispersion of Fackrell and Robins (1982). The simulations are done for different droplet size
distributions and volume fractions. Attention is paid on the influence of transport by turbulence, coalescence,
droplet size distribution and volume fraction, on the statistics of the dispersed phase and on the behavior of
the plume.
2. Simulation overview

2.1. Large eddy simulation (LES)

A turbulent boundary layer is computed using the LES code ARPS 4.5.2 (Xue et al., 2000; Xue et al., 2001).
ARPS is a 3D, non-hydrostatic code where the fully compressible equations are solved with a time splitting
procedure (Klemp and Wilhelmson, 1978). The continuity and momentum equations obtained by grid filtering
the Navier–Stokes equations are
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where ui is the fluid velocity, p is the total pressure, m is the molecular kinematic viscosity, qf is the density and
i = 1, 2, 3 refers to the x (streamwise), y (spanwise), and z (normal) directions, respectively. Bi includes the
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gravity and the Coriolis force. The tilde denotes application of the grid-filtering operation. The filter width ~D is
defined as ~D ¼ ð~Dx

~Dy
~DzÞ1=3, where ~Dx, ~Dy , ~Dz are the grid spacings in the x, y and z directions, respectively.

The effect of the subgrid scales on the resolved eddies in Eq. (1) is presented by the SGS stress,
srij ¼ guiuj � ~ui~uj.

The pressure equation is obtained by taking material derivative of the equation of state and replacing the
time derivative of density by the velocity divergence using the mass continuity equation:
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where Dp is the pressure deviation from an undisturbed dry, hydrostatic base state, c is the speed of sound
and h is the potential temperature. The flow studied here is a neutral turbulent boundary layer. The potential
temperature variations are therefore negligible.

The determination of the SGS stress, srij, is parameterized using an eddy viscosity hypothesis:
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1

3
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~Sij; ð3Þ
where the turbulent eddy viscosity Km is
Km ¼ C~D
2j~Sj; ð4Þ
the resolved-scale strain tensor is defined as
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and j~Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2~Sij

~Sij

q
is the magnitude of ~Sij. The model coefficient C in Eq. (4) is determined locally and instan-

taneously with the dynamic SGS closure developed by Germano et al. (1991) and modified by Lilly (1992).
The dimensions of the computational domain in the streamwise, spanwise and wall-normal directions are,

respectively, lx = 6H, ly = 3H and lz = 2H, H being the boundary layer depth. The Reynolds number based on
the friction velocity and the boundary layer depth is Re = 15040. The grid is uniform in the xy-planes and
stretched in the z-direction by a hyperbolic tangent function. The grid spacings are Dx = 0.083H,
Dy = 0.083H and 0.0025H < Dz < 0.083H.

The no-slip boundary condition is applied at the wall. On the top of the domain and in the spanwise direc-
tion the mirror free-slip and the periodic boundary conditions are applied, respectively. In the streamwise
direction, at the end of the domain the wave-radiation open boundary condition is used (Klemp and Wilhelm-
son, 1978) in order to allow waves in the interior of the domain to pass out freely through the boundary with
minimal reflection. At the beginning of the domain, in the streamwise direction forcing is applied. The data set
is obtained from the experimental results of Fackrell and Robins (1982).
2.2. Lagrangian particle tracking

The motion of particles with material densities large compared to the fluid is considered. In this regime the
drag and gravity forces are substantially larger than the forces associated with virtual mass and history effects.
The particle equation of motion can be expressed as
d~xpðtÞ
dt

¼~vpðtÞ;

d~vpðtÞ
dt

¼~vð~xpðtÞ; tÞ �~vpðtÞ
sp

f ðRepÞ þ~g.
ð6Þ
In Eq. (6),~vp is the particle velocity,~vð~xpðtÞ; tÞ is the velocity of the fluid at the particle position and ~g is the
acceleration of gravity. The particle relaxation time sp is given by
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sp ¼
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2
p

18qf m
; ð7Þ
where the particle density is denoted by qp and the diameter by dp. Effects of nonlinear drag are incorporated
through f(Rep) and in this work an empirical relation from Clift et al. (1978) is used:
f ðRepÞ ¼
1 if Rep < 1;

1þ 0:15Re0:687p if Rep P 1;

(
ð8Þ
where
Rep ¼
j~vp �~vjdp

m
ð9Þ
is the particle Reynolds number.
The particle equation of motion 6 is time advanced using a second-order Runge–Kutta scheme. A fourth-

order Runge–Kutta scheme has been tested and no differences were observed. The fluid velocity at the particle
position~vð~xpðtÞ; tÞ is given by the velocity field of the LES, plus a subgrid contribution. The large-scale com-
ponent of the fluid velocity at the particle position is obtained by a tri-linear quadratic Lagrange interpolation
scheme with 27 nodes, as described by Casulli and Cheng (1992). The SGS contribution is determined by a
modified Lagrangian stochastic model.

2.3. Stochastic modeling of the subgrid scale fluid velocity at particle position

2.3.1. Fluid particle

The SGS velocity of droplets is given by analogy with the SGS stochastic model for fluid particle dispersion
(Vinkovic et al., 2005a). Namely, the Lagrangian velocity of the fluid particle is given by
viðtÞ ¼ ~uið~xðtÞÞ þ m0iðtÞ. ð10Þ

This velocity is considered to have an Eulerian large-scale part ~uið~xðtÞÞ (which is known) and a fluctuating SGS
contribution v0iðtÞ, which is not known and will be modeled by the stochastic approach. The movement of fluid
elements at a subgrid level is given by a three-dimensional Langevin equation (Gardiner, 1985), originally pro-
posed as a stochastic model for the velocity of a microscopic particle undergoing Brownian motion:
dv0i ¼ aijð~x; tÞv0jdt þ bijð~x; tÞdgjðtÞ;
dxi ¼ vidt;

�
ð11Þ
where dgj is the increment of a vector-valued Wiener process with zero mean and variance dt:
hdgji ¼ 0;

hdgidgji ¼ dtdij.
ð12Þ
The fluid particle velocity is given by a deterministic part aijv0j and by a completely random part bijdgj. The
coefficients aij and bij are determined by relating the subgrid statistical moments of~vðtÞ to the filtered Eulerian
moments of the fluid velocity, in analogy with van Dop et al. (1986) who developed this approach in the case
of a classic Reynolds averaged decomposition. Knowing that the subgrid turbulence is homogeneous and
isotropic at a mesh level (basic assumption of the LES), the velocity of fluid elements given by the Langevin
model writes as
dv0i ¼ � 1

T L

þ 1
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where TL is the Lagrangian correlation timescale, given by
T L ¼ 4~k
3C0~e

; ð14Þ
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~k being the subgrid turbulent kinetic energy, ~e the subgrid turbulent dissipation rate and C0 the Lagrangian
constant. The large-scale velocity of the fluid particle is directly computed by the LES with the dynamic
Smagorinsky–Germano SGS model. An additional transport equation for ~k is resolved. This equation is
deduced from Deardorff (1980):
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where ~e ¼ Ce
~k
3=2

=~D. The terms on the right-hand side of Eq. (15) correspond, respectively, to the production
by buoyancy, the production by shear, the diffusion of ~k and the dissipation. Since we are interested in neutral
flows the potential temperature variation is neglected. The turbulent eddy viscosity Km is computed by a
dynamic procedure as described in the previous section. As suggested by Deardorff (1980), in the dissipation
term, coefficient Ce has the value:
Ce ¼
3:9 at first grid;

0:7 otherwise.

�
ð16Þ
The results of our simulations are very sensitive to the model constants (Eq. (16)). Dynamic closures for these
constants could be introduced as suggested by Ghosal et al. (1995).

2.3.2. Fluid particle at droplet position

Because of its inertia effects and its different responses to gravity, droplets deviate from the fluid element
that originally contained them, inducing a decorrelation. The main difficulty lies in the determination of
the fluid particle velocity along the droplet trajectory, ~vð~xpðtÞ; tÞ. This fluid velocity is computed with Eq.
(10) and by analogy with Eq. (13) where TL is replaced by T p

L, a Lagrangian decorrelation timescale of the
fluid velocity along the droplet trajectory. In order to account for gravity and inertia effects, we expect the
modified timescale to be shorter than the fluid Lagrangian timescale TL. The velocities to which a droplet
is subjected will not be as well correlated as those to which a fluid particle is subjected. Moreover, as noted
by Rodgers and Eaton (1990), a frequency measured in a Lagrangian frame is always smaller than a frequency
measured in an Eulerian one. different forms have been previously developed for T p

L, as Sawford and Guess
(1991), Zhuang et al. (1989) for example. Aguirre et al. (2004) proposed the following formulation:
T p
L ¼ T L

agrav þ ainert
; ð17Þ
where agrav and ainert are the coefficients related to gravity and inertia effects. The gravity effect is estimated
following the approximation of Csanady (1963). Csanady (1963) proposed an interpolation between the
Lagrangian correlation for vanishing inertia and small terminal velocity vg and the Eulerian correlation for
large vg. In the direction parallel to gravity, with b an empirical constant, agrav is given by
agrav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bvg

~r

� �2
s

; ð18Þ
where ~r ¼
ffiffiffiffiffiffiffiffiffiffi
2~k=3

q
.

The inertia effect is evaluated in the limit of large inertia and vanishing vg. A turbulent structure (length
scale l), passing by a the moving particle would have a frequency of
mpart ¼
j~vð~xpðtÞ; tÞ � ð~vp �~vgÞj

~�
mL ¼ ainertmL; ð19Þ
where mL represents the Lagrangian correlation timescale.
For the limiting case, when gravity and inertia effects are negligible, the asymptotic behavior is satisfied.

Recently, Shao (1995) and Reynolds (2000) have pointed out some contradictions relative to the structure
function of ~m0ð~xpðtÞ; tÞ and suggested that this velocity should be evaluated using a fractional Langevin
equation. In fact, Wiener increments necessarily lead to a structure function proportional to dt when, in
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the limiting case of large drift velocity and negligible inertia, the driving fluid velocity correlation approaches
the Eulerian space–time correlation which is proportional to dt2/3. However, the droplets studied here being
far from these limiting cases, in a way identical to Reynolds (2000), we will forsake considerations of the struc-
ture function for increments in fluid velocity and treat dgj as increments of a Wiener process.

2.4. Two-way coupling

Influence of the presence of particles on the fluid motion has not yet been fully understood. In some cases,
e.g. bubble flow, the presence of particles may produce velocity fluctuations of the surrounding fluid whose
wavelength is smaller than the particle diameter.

However, it was numerically shown by Pan and Banerjee (1996) that the particles work as if they were an
extra burden to the fluid when the particles are small and have much larger density than the surrounding fluid,
as is the case in the present study. In such case, the momentum transfer from particles to fluid can be success-
fully modeled by adding the reaction force against the surface force acting on the particle to the Navier–Stokes
equation, Eq. (1). This model is sometimes referred to as the force coupling model in contrast to the velocity
coupling model (Pan and Banerjee, 1996) in which the velocity disturbance around the particle is considered.

When the two-way coupling is modeled by the force coupling model, an extra term appears in the transport
equation of the subgrid turbulent kinetic energy, Eq. (15):
gu0kf 0
k ¼

qpUp

qf sp
gu0kv0k ð~xpðtÞ; tÞ � gu0kv0pk� �

f ðRepÞ; ð20Þ
where f 0
k is the fluctuation component of the force from particles to fluid and Up is the volume fraction in the

grid cell occupied by the particles. Although several formulas have been proposed for the approximation
of gu0kv0pk , the model by Porahmadi and Humphrey (1983)
gu0kv0pk ð~xpðtÞ; tÞ ¼ 2~k
1þ sp=T L

ð21Þ
has been adopted for simplicity. In addition to this, we assume that gu0kv0k ð~xpðtÞ; tÞ ¼ 2~k. Therefore, the addi-
tional term in the transport equation of the subgrid turbulent kinetic energy writes as
gu0kf 0
k ¼

qpUp

qf

2~k
sp þ T L

f ðRepÞ. ð22Þ
The coupling between the LES, the Lagrangian particle tracking, the modified Langevin model and the two-
way coupling has been validated in comparison with wind tunnel experiments on sand particles. The results of
these validations are shown in Vinkovic et al. (2005b) and Vinkovic (2005).
3. Coalescence and breakup model

In the dense spray regions, the new droplets are formed due to collisions between droplets. Some of colli-
sions induce the breakup of droplets, others their coalescence. Although each individual outcome of inter-
droplet interactions is a complex process, the number of breakup/coalescence events per unit time may be
large. In this situation, it is natural to abstract a simple scenario of breakup/coalescence process and to rep-
resent its essential features. One of the possibilities is to assume that new droplets are formed under scaling
symmetry; i.e. the size of mother drop (breakup), or of droplet-collector (coalescence) changes randomly
and independently of its initial value. Considering, for example, the breakup process, the scaling symmetry
assumption is r ) ar, where r is the size of the mother drop changed by an independent positive multiplier
a (0 < a < 1). This multiplier is random and governed by distribution Q(a), Q(a)da being the probability to
get the produced droplet in the range [a; a + da] of the mother droplet size. In addition to this
Z 1

0

QðaÞda ¼ 1. ð23Þ
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This distribution is in principle unknown. If the frequency of breakup is high, Gorokhovski and Saveliev
(2003) showed two universalities of such process. The first one is as follows: whatever the spectrum Q(a),
the evolution of the PDF of radius f(r, t), from its initial distribution f(r0) towards smaller sizes, is governed
by a Fokker–Planck equation with two parameters. These two parameters are the first and the second loga-
rithmic moments of Q(a), hlnai and hln2ai. The second universality is: at last stages of breakup, the distribu-
tion of radius has power (fractal) behavior and only one parameter, the ratio hlnai/hln2ai, intervenes in the
evolution of this distribution.

Using the same formalism, we formulate the coalescence process in the space of droplet-collector size rel-
ative to its possible maximal value. From the balance between gravity of droplets and their local inertia, we
presume the upper limit of the radius, rmax. Then we introduce the new variable y = rmax � r, where r is the
current radius of droplet-collector. Along with coalescence, the PDF f(y, t) evolves from its initial shape
f(y0) (y0 = rmax � r0; r0 being the initial radius of droplet-collectors) towards its distribution on smaller values
of y; i.e. towards eventually maximum possible sizes of droplet-collector. We assume that after each
coalescence
y ) by; 0 < b < 1; ð24Þ

where b is a random multiplier governed by distribution q(b); q(b)db is the probability that after coalescence,
the size of the collector, relative to its former size, can be found in the range [b; b + db] of its previous value
(r � rmax). The normalization of this distribution is
Z 1

0

qðbÞdb ¼ 1. ð25Þ
The assumption (24) is equivalent to dr = (1 � b)(rmax � r), where dr is the increment of the collector size r.
The distribution q(b) is also an unknown function. However, it is clear that in the framework of scaling sym-
metry (24), the evolution of normalized distribution f(y, t) will be governed by the same equations that have
been derived by Gorokhovski and Saveliev (2003) for the fragmentation process. The parameters hlnbi and
hln2bi will be different from hlnai and hln2ai. Similar to the closure proposed by Apte et al. (2003) for hlnai
and hln2ai, one may compute hlnbi and hln2bi from the local resolved properties of gaseous and dispersed
phases.

Droplets with a lifetime that attains the collision timescale are randomly selected by pairs of colliding part-
ners within each grid cell. In the case of coalescence, the droplet of larger radius in each pair is called collector.
The size of newly produced droplets is sampled from the analytical solution of the Fokker–Planck equation,
selectively, either for y variable, f(y, mct + 1) (giving new radius of droplet-collector, r = rmax � y), if coales-
cence occurs, or for r variable, f(r, mct + 1), in the case of breakup. The first case requires the knowledge of
hlnbi and hln2bi, while the second one needs hlnai and hln2ai. The choice between breakup and coalescence
is based on the relative Weber number of colliding partners. The mass conservation is applied within each grid
cell to compute the number of newly formed droplets. The velocities of these droplets are given by momentum
conservation. The results of the present model are compared with the model for micro-particle agglomeration
of Ho and Sommerfeld (2002) and the experimental results on secondary breakup of Lasheras et al. (1998).

3.1. Fokker–Planck equation for particle coalescence and breakup

In the case of breakup under the scaling symmetry with constant breakup frequency, the normalized dis-
tribution of newly produced droplets, f(r, t), evolves according to the following integro-differential equation
(Gorokhovski and Saveliev, 2003):
of ðr; tÞ
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¼ mc
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where mc is the breakup frequency and
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Expanding 1
a f ðra ; tÞ on powers of lna, one yields
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With this expansion, Eq. (26) takes the following differential form:
1
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Gorokhovski and Saveliev (2003) showed that although each term on the right-hand side of Eq. (29) can be
significant, their renormalized sum of terms with hlnkai, k > 2 becomes, at large times, negligible. Then Eq.
(29) reduces exactly to the Fokker–Planck equation, describing drift and diffusion of f(r, t):
of ðr; tÞ
ot

¼ �mchln ai
o

or
ðrf ðr; tÞÞ þ mchln2ai o

or
r
o

or
ðrf ðr; tÞÞ. ð30Þ
Here the first two logarithmic moments of Q(a), hlnai and hln2ai, are parameters of the model. The value of
these two parameters will be fixed by the local dynamical properties of the flow and the dispersed droplets, as
described in Section 3.5. The solution of Eq. (30) verifies to be
f ðr; tÞ ¼ 1

r

Z þ1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phln2aimct

q exp �
ln r

R � hln aimct
� �2

2hln2aimct

( )
f0ðRÞdR; ð31Þ
where f0(R) is the initial distribution before breakup or coalescence takes place. If the size of the primary drop-
let is supposed to be known, the initial distribution in Eq. (31) has the Dirac delta function shape,
f0(R) = d(R � r0). Then, Eq. (31) rewrites as
f ðr; tÞ ¼ 1

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2phln2aimct
q exp �

ln r
r0
� hln aimct

� �2
2hln2aimct

8><>:
9>=>;; ð32Þ
which is log-normal distribution with mean ln r0 + hlnaimct and variance hln2aimct.
Consider the coalescence process in the space of collector size relative to its maximal value. Introducing the

distribution of droplet-collector, the rate of coalescence and scaling symmetry (24), one yields the evolution
equation for normalized distribution f(y, t) of the same form as Eq. (26):
of ðy; tÞ
ot

¼ mc

Z 1

0

f
y
b
; t

� �
qðbÞ db

b
� mcf ðy; tÞ. ð33Þ
Replacing r by y, and a by b in Eqs. (28)–(31), one rewrites for coalescence:
f ðy; tÞ ¼ 1

y
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2phln2bimct
q exp �

ln y
y0
� hln bimct

� �2
2hln2bimct

8><>:
9>=>;; ð34Þ
where y0 is addressed to the droplet-collector. In this work, the numerical procedure of breakup simulation
given in Apte et al. (2003) will be extended by the choice of parameters mc, hlnbi and hln2bi. This allows to
treat both breakup and coalescence with one model, and furthermore, to include naturally the contact between
droplets.
3.2. General structure of the model

The domain is divided in square boxes. Their size is Lbox = 0.1 m. In each box, at each time step, particles
are randomly selected by pairs. The lifetime of droplets is 0 at the beginning of the simulation and increases
on dt for each time step. If the lifetime of both selected droplets is bigger than 1/mc and if the relative Weber
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number, Werel, of the selected droplets is smaller than the critical Weber number for coalescence, Wec, or big-
ger than the critical Weber number for breakup, Web, new droplets are created. Their radius is sampled from
distributions Eq. (32) or Eq. (34), selectively for breakup or coalescence. The size of collector gives y0 in Eq.
(34). The parent drops are replaced and Lagrangian tracking of newly formed droplets is continued till the
next coalescence or breakup event. The velocities of the newly formed droplets result from the momentum
balance and the velocities of the parent droplets as in Ho and Sommerfeld (2002). Note that neither coales-
cence nor breakup can occur if Wec < Werel < Web. In this case we consider that the droplets bounce apart.
3.3. Critical Weber number

For each pair of randomly selected particles, the relative Weber number is computed according to
Werel ¼
qpv

2
reldp

r
; ð35Þ
where vrel ¼ j~vp;1 �~vp;2j is the relative velocity between the droplets and r the surface tension coefficient. This
number describes the ratio of the inertial force to the surface tension force, which seem to be the main forces
acting on the process for the studied cases. The relative velocity between droplets, vrel, is considered rather
than the relative velocity between the fluid and the droplet in order to take into account droplet contact
for specific conditional cases.

When two droplets interact during flight, five different regimes of outcomes may occur (Kollár et al., 2005),
namely (i) coalescence after minor deformation, (ii) bouncing, (iii) coalescence after substantial deformation,
(iv) reflexive separation, and (v) stretching separation. The collision process is usually characterized by three
parameters: the Weber number, the impact parameter, and the droplet size ratio. Boundary curves between
regions of possible outcomes in terms of these parameters are proposed by several authors (Ashgriz and
Poo, 1990; Brazier-Smith et al., 1972). Extensive experimental investigation was conducted and several out-
come maps are presented in Qian and Law (1997). Further experimental studies were reviewed by Orme
(1997).

Because we treat both coalescence and breakup we have to specify a critical Weber number for each pro-
cess. In the present model, the critical Weber numbers for coalescence (Wec) and breakup (Web) are fixed in
comparison with the model for micro-particle agglomeration of Ho and Sommerfeld (2002) and the experi-
mental results on secondary breakup of Lasheras et al. (1998). Then, the obtained values are compared with
the experimental observation on the stream of droplets, cited above.
3.4. Collision frequency

Apte et al. (2003) did not model droplet coalescence. Thus, they have not considered particle contact. In the
coalescence model by Sommerfeld (2001) droplet contact is taken into account. Therefore, in our model the
contact frequency, necessary for both coalescence and breakup, is characterized following Sommerfeld (2001).
The occurrence of coalescence and breakup is decided based on the collision frequency according to the kinetic
theory of gases (Sommerfeld, 2001),
mc ¼
p
4
ðdp;1 þ dp;2Þ2j~vp;1 �~vp;2jnp; ð36Þ
where np is the number of droplets per unit volume in the respective control volume, dp,1 and dp,2 are the drop-
let diameters and vrel ¼ j~vp;1 �~vp;2j is the instantaneous relative velocity between the two droplets.

3.5. Choice of parameters hlnai, hln2ai,hlnbi and hln2bi

Droplet coalescence and breakup are considered here as a discrete random process in the framework of
uncorrelated events. By analogy with the stochastic model for secondary breakup of Apte et al. (2003), the
parameters hlnai, hln2ai,hlnbi and hln2bi are related to the local resolved properties of the dispersed phase,
by
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hln ai ¼ ðconstÞ log Werelcr
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� �
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� �
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8>>>>>>>><>>>>>>>>:
ð37Þ
where ‘const’ is taken here of order of unity and Werelcr is either Wec or Web, whether coalescence or breakup
takes place.

Apte et al. (2003) consider that breakup is generated by aerodynamic forces and that it occurs because of a
high relative velocity between the gas and the droplet. In the present model, both coalescence and breakup are
viewed as different outcomes of droplet collision events, Section 3.3, supported by Georjon and Reitz (1999)
and the experiments on stream of droplets by Brazier-Smith et al. (1972), Ashgriz and Poo (1990) and Qian
and Law (1997). Therefore, in the present model the parameters hlnai, hln2ai, hlnbi and hln2bi are functions
of the relative velocity between droplets (relative Weber number), and no longer of the relative velocity
between the gas and droplet as in Apte et al. (2003).
4. Validation of the coalescence and breakup model

The Lagrangian model (Eq. (6)), the modified Langevin equation (Eqs. (13) and (17)) and the model for
coalescence and breakup (Section 3.2) are tested in this section. In this part the LES is not applied and the
mean properties of the flow field are obtained by analytic profiles. The instantaneous fluid velocity along
the droplet trajectory is generated by the Langevin equation model described in Section 2.3.2. Two test cases
are considered to validate the developed coalescence and breakup model: the model for micro-particle agglom-
eration of Ho and Sommerfeld (2002) and the experimental results on secondary breakup of Lasheras et al.
(1998). For each simulation a relative critical Weber number, Werelcr , has to be fixed both for coalescence
and breakup. Thereby, the complete model for coalescence and breakup is applied for each of the chosen cases
presented below. Explicitly, both coalescence and breakup are active during each simulation.

4.1. Comparison with the stochastic model for micro-particle agglomeration (Ho and Sommerfeld, 2002)

The first test case considered to validate the developed coalescence and breakup model is a homogeneous
isotropic turbulence field in a cube with periodic boundary conditions. The turbulence characteristics and the
particle properties are summarized in Table 1. At the beginning of our simulation there are around 38,400
droplets in the domain, while at the end about 20,200 droplets remain.

Ho and Sommerfeld (2002) developed an agglomeration model. It relies for a given droplet, on the gener-
ation of a fictitious collision partner and the calculation of the collision probability according to the kinetic
theory of gases related to the trajectory of the chosen droplet. The fictitious particle size is stochastically
1
lence characteristics and particle phase properties

lent kinetic energy k = 0.001–0.25 m2/s2

lent dissipation rate e = 50 m2/s3

atic viscosity m = 1.5 · 10�5 m2/s
lent integral timescale TL = 6.5 · 10�4–1.6 · 10�3 s
lds number Rek = 0.05–8.5
e diameter d = 1.0–100 lm
e material density qp = 1000 kg/m3

e relaxation time sp = 0.62–14 ms
e volume fraction 1.4 · 105
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sampled from the local particle size distribution. If an agglomerate is formed, the properties of the new particle
are directly determined by mass and momentum conservation of the colliding particles. For droplet transport,
Ho and Sommerfeld (2002) use a Langevin equation model.

The PDF of the relative velocity between droplets for three different values of the turbulent kinetic energy
obtained by our simulations are illustrated in Fig. 1. This PDF is obtained from all the droplets inside the
domain. The results of our simulations are in good agreement with the model of Ho and Sommerfeld
(2002). However, discrepancies exist for small values of the turbulent kinetic energy, when the rate of collision
is small. The differences are probably due to the fact that in our model particles are randomly selected by pairs
(as described in Section 3.2) while Ho and Sommerfeld (2002) generate fictitious collision partners. With rising
turbulence level the relative velocity distribution is broadened towards higher values.

The time evolution of the size distribution of droplets is shown in Fig. 2. Even though our approach is com-
pletely different from the model of Ho and Sommerfeld (2002), both results are in close agreement. The initial
size distribution is Gaussian with a mean diameter of 8 lm and a standard deviation of 2.5 lm. The turbulent
kinetic energy is low and breakup does not take place. The number of small particles decreases rapidly in time
due to coalescence. On the other hand, the number of large particles increases at a much lower rate because of
the small volume equivalent diameter of small particles.

The critical relative Weber number for coalescence was fixed to Werelcr ¼ Wec ¼ 1:25� 10�3. The experi-
ments on the stream of droplets (Section 3.3) were mostly conducted for relative Weber numbers between 1
and 100. This is mostly due to the difficulty of generating streams of droplets with diameters smaller than
100 lm. However, Wec = 1.25 · 10�3 is equivalent to choosing a critical relative velocity, vrelcr ¼ 0:15 m=s
for droplets of dp = 8 lm in diameter, since Werelcr ¼ qpv

2
relcr

dp=r. In their model, Ho and Sommerfeld
(2002) use a critical relative velocity. Ho and Sommerfeld (2002) suppose that the formation of an agglomerate
from two colliding particles takes place when the normal relative velocity between them is less than the critical
velocity. This velocity is obtained from an energy balance when only the van der Waals forces are considered.
For particles with a diameter of dp = 8 lm, Ho and Sommerfeld (2002) find that vrelcr � 0:13 m=s, which is
practically the same value as the one used in our model.

4.2. Comparison with experimental results of Lasheras et al. (1998)

By mean of high-speed flow visualizations and phase droplet particle sizing techniques, Lasheras et al.
(1998) examined the near- and the far-field breakup and atomization of a water jet by a high-speed annular
air jet. They noted that the droplet diameter does not decrease to an asymptotic value at large downstream
distances from the nozzle. The mean diameter decreases first, reaching a minimum, and then increases mono-
tonically with distance from the nozzle. Lasheras et al. (1998) also observed that the minimum mean droplet
diameter and its downstream position decrease with increasing air flow. Because it presents a mixed case of
coalescence and breakup, this experiment is used as the second test case.
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Fig. 2. Size distribution of particles undergoing coalescence at t = 0 s, t = 1 s, t = 3 s and t = 5 s: line, present model; squares, Ho and
Sommerfeld (2002).

Table 2
Turbulence characteristics and particle phase properties

Ul1 ¼ 0:13 m=s x0 = 10Dg dinit = 40 lm m = 0.38 ead = 0.72 kad = 0.72
Ul2 ¼ 0:20 m=s x0 = 12Dg dinit = 50 lm m = 0.58 ead = 0.63 kad = 0.63
Ul3 ¼ 0:31 m=s x0 = 12Dg dinit = 52 lm m = 0.91 ead = 0.52 kad = 0.52
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Different flow conditions were tested and they are summarized in Table 2. Ul is the liquid jet velocity. The
subscripts l1, l2 and l3 stand for three different initial liquid jet velocities. Dl is the liquid jet diameter. The rate
of dissipation and the turbulent kinetic energy are normalized by the gas phase velocity Ug, the diameter of the
gas phase jet Dg and the mass rate m according to
e �
U 3

g

Dgð1þ mÞ ; ð38Þ
where
m ¼ qlU lD2
l

qgU gD2
g

. ð39Þ
Since we are only interested in modeling secondary breakup, the model was applied at a downstream distance
x0 from the nozzle, where the primary breakup was over. For the initial droplet diameter a Gaussian PDF is
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used, with a mean diameter, dinit, estimated from the mean Sauter diameter measured by Lasheras et al. (1998)
at x0. The mean Sauter diameter is given by
Fig. 3.
full lin
dsauter ¼

PNp

i¼1

d3
p;iPNp

i¼1

d2
p;i

; ð40Þ
where Np is the total number of droplets in the domain. It is defined as the diameter of a droplet having the
same volume/surface ratio as the entire spray. The time step used in the simulations is dt = 5.6 · 10�3 s. At
each time step about 30,000 particles are tracked.

Fig. 3 shows the variation of the mean Sauter diameter with downstream distance for three different air flow
rates. The results of our model are in good agreement with the experimental results of Lasheras et al. (1998).
The model reproduces the transition between the breakup and the coalescence regions. The evolution of the
mean Sauter diameter shows a non-monotonic dependence on x/Dg, first decreasing and then increasing. The
value of the minimum droplet diameter and its location increase with increasing Ul.

As for the first test case the critical Weber numbers for breakup and coalescence are fixed in order to fit the
experimental results. The critical relative Weber number for coalescence is fixed to Wec = 0.7. This is in accor-
dance with the experimental observations on the stream of droplets (Brazier-Smith et al., 1972; Ashgriz and
Poo, 1990; Qian and Law, 1997). The critical relative Weber number for breakup is fixed toWeb = 1 which is a
very low value. However, in the experiments of Lasheras et al. (1998), there is a big uncertainty on the esti-
mation of the turbulent dissipation rate and the turbulent kinetic energy at the centerline of the jet. By choos-
ing a higher turbulent kinetic energy we could have obtained the same results with higher critical relative
Weber numbers.

It should be mentioned that, the simulations carried out here are not in the same regime as the experiments
of Brazier-Smith et al. (1972), Ashgriz and Poo (1990) or Qian and Law (1997). However, no other experi-
ments containing a complete data set on the droplet dynamics were found. Clearly, the relative critical Weber
number parameterized by different regimes remains an open question.

It is interesting to note here that breakup and coalescence take place at different stages of the coaxial
jet.

In this study we are mostly interested in atmospheric dispersion of droplets. In atmospheric condi-
tions, mean relative velocities are low and droplet collisions lead mostly to coalescence or bouncing rather
than fragmentation. Therefore, the relative critical Weber number fixed in the first test case is used in the next
section.
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5. Application to the study of wet cooling tower plumes

The LES coupled with Lagrangian particle tracking and the model for droplet coalescence and breakup is
applied to the study of the atmospheric dispersion of wet cooling tower plumes. Since we did not find any wind
tunnel experiment or in situ measurements of droplet dispersion in an atmospheric turbulent boundary layer
we compared the numerical results with the experiment on passive scalar plume dispersion of Fackrell and
Robins (1982). Details about the setup and the LES of this case may be found in Vinkovic et al. (in press).

5.1. Simulation description

Inside water cooling tower plumes, the droplet size distribution can be characterized by a mean droplet
diameter of 12 lm, a standard deviation of 4 lm and a concentration of 200 droplets/cm3, Hodin et al.
(1980). Droplets with an initial Gaussian size distribution of mean dp = 12 lm and variance 4 lm are injected
at the source.

A full description of the experimental facility and results can be found in Fackrell and Robins (1982). Here,
the main characteristics of the experiment necessary for understanding the simulations are given. A turbulent
boundary layer over a rough wall is generated in an open-circuit wind tunnel. The height H of the turbulent
boundary layer is 1.2 m and the roughness length is z0/H = 2.4 · 10�4. The mean velocity at the boundary
layer edge Ue is 4 m/s and the friction velocity u*/Ue = 0.047. A passive scalar plume from a point source
at zs/H = 0.19 is studied. The elevated source has a 8.5 mm diameter and it emits at the average velocity of
the flow over its height. The source gas consists only of a neutrally buoyant mixture of propane and helium.
The former is used as a trace gas for concentration measurements. Fackrell and Robins (1982) measured the
mean concentration, the concentration fluctuations and the fluxes in the passive scalar plume.

5.2. Results and analysis

The LES coupled with the subgrid stochastic model has already been applied to the study of passive scalar
dispersion (Vinkovic et al., in press). Details of the boundary layer flow such as mean velocity, turbulent
kinetic energy and fluctuation profiles can be found in Vinkovic et al. (in press). Here we will only describe
the results relative to droplet dispersion.

The mean concentration profiles for droplets of 12 lm of 60 lm in mean diameter at different stations com-
pared to the mean concentration profiles of passive scalar are shown in Fig. 4. Both types of droplets fall to the
ground faster than the passive scalar plume. At the last station, droplets of 12 lm remain suspended while
60 lm droplets present a maximum concentration at the ground. The mean concentration profile of 60 lm
droplets is no longer similar to the mean concentration profile of a passive scalar plume.
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Fig. 5 illustrates vertical profiles of mean-square concentration, c 0, for passive scalar and two sizes of
droplets. As expected, the maximum value of the mean-square concentration for 60 lm droplets falls rap-
idly towards the ground. At the last station, even though the mean concentration profile for 12 lm drop-
lets is similar to the concentration profile of a passive scalar, the mean-square concentration profiles differs
significantly, specially close to the ground. This supports the fact that even if the mean concentration of small
droplets presents the same behavior as a passive scalar plume, differences can remain for higher order
moments.

Vertical profiles of vertical mass flux w0
pc

0, are illustrated in Fig. 6, where w0
p is the fluctuating vertical drop-

let velocity. The mass flux is normalized by the maximum concentration Cmax and the friction velocity u*. For
both types of droplets, even close to the source mass fluxes differ from the passive scalar plume. Droplet mass
flux profiles present a higher negative value close to the ground at x/H = 0.96, because, even for very small
droplets sedimentation takes place. On the other hand, higher in the turbulent boundary layer, because of iner-
tia, droplet mass flux profiles have lower peak values. We can also see that as the droplet diameter increases
the peak value decreases.

In these simulations, the subgrid scale kinetic energy represents about 20% of the resolved kinetic energy as
described in Vinkovic et al. (in press). Therefore, the subgrid stochastic model affects droplet dispersion as
shown by the recent work of Pozorski et al. (2004) and in Vinkovic (2005).
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5.3. Coalescence and breakup of droplets within the wet cooling tower plume

In the previous section, the mean water content of the plume is fixed to 0.2 g/m3, as measured by Hodin
et al. (1980) in the plume of Bugey nuclear power plant. Because the water content is so low, the volume frac-
tion of particles (Up = 2 · 10�7) is not high enough for collisions to be significant. As shown in Fig. 7, the
relative velocities and the relative Weber numbers of droplets are such that coalescence can take place. How-
ever, no changes in the size distribution appear because of the low volume fraction.

In order to test the impact of coalescence, the number of 60 lm droplets per unit volume is increased up to a
volume fraction of Up = 2 · 10�3. Fig. 8 illustrates the size distribution at different distances from the source.
As the downstream distance increases, there is formation of bigger droplets. The changes in the size distribu-
tion are small. Compared to the initial Gaussian distribution we can notice that, here, the probability for hav-
ing droplets with a diameter larger than 80 lm is no longer zero. Fig. 9 illustrates the vertical profile of mean
concentration at three different downstream distances. Even though the changes in the size distribution are
small, the mean concentration profile is modified. At x = 0.96d, the maximum concentration peak of the
plume with a high volume fraction is closer to the ground than the maximum concentration peak of the plume
with Up = 2 · 10�7. At x = 1.92d, the plume with the high volume fraction reaches the ground while the low
level volume fraction plume remains suspended. Finally, at the last section, the dispersion of the plume with
Up = 2 · 10�3 is smaller and this plume presents a higher concentration at the ground.

Fig. 10 illustrates vertical profiles of mean-square concentration for a plume with a volume fraction of
Up = 2 · 10�3 compared to the plume studied in the section above. As expected, the profiles are modified.
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The higher volume fraction plume reaches the ground faster, as can be seen from the mean-square concentra-
tion profiles where the maximum remains at the ground level.

Finally, the changes induced by the coalescence of droplets on the vertical mass flux profiles are shown in
Fig. 11. As expected, when larger droplets appear in the plume, the mass flux near the ground becomes higher
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because of sedimentation and the mass flux, far from the ground, decreases because of sedimentation as well as
of bigger particle inertia. Even small changes in the size distribution of a plume of droplets may produce
important modification of the plume dispersion. Therefore, it is necessarily to describe and model correctly
all interaction that may lead to changes in droplet size.

The model for coalescence and breakup presented here (Section 3) was applied to the splashing of droplets
during impact on the wall. The relative velocity between a pair of droplets was replaced by the velocity of the
droplet impacting the wall. Whether this model is applied or not has no influence on the results because the
droplets reaching the wall do not have enough velocity to splash.

6. Conclusion

A LES with the dynamic SGS model of Germano et al. (1991) coupled with a Lagrangian stochastic model
has been applied to the study of droplet dispersion in a turbulent boundary layer. Droplets are tracked in a
Lagrangian way. The velocity of the fluid particle along the droplet trajectory is considered to have a large-
scale part and a small-scale part given by a modified three-dimensional Langevin model using the filtered SGS
statistics. An appropriate Lagrangian correlation timescale is considered in order to include the influences of
gravity and inertia. Two-way coupling is also taken into account.

A model for droplet coalescence and breakup has been implemented which allows to predict droplet inter-
actions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and
breakup are considered in the framework of stochastic process with simple scaling symmetry assumption
for the droplet radius. At high-frequency of breakup/coalescence phenomena, this stochastic process is equiv-
alent to the evolution of the PDF of droplet radii, which is governed by a Fokker–Planck equation. The
parameters of the model are obtained dynamically by relating them to the local resolved properties of the dis-
persed phase compared to the mean fluid. Within each grid cell, mass conservation is applied. The model is
validated by comparison with the agglomeration model of Ho and Sommerfeld (2002) and the experimental
results on secondary breakup of Lasheras et al. (1998). The critical parameters of our model are fixed in order
to fit the time evolution of the size distribution of Ho and Sommerfeld (2002). Natural droplet contact is intro-
duced by the particle pairing process for collision.

The LES coupled with Lagrangian particle tracking and the model for droplet coalescence and breakup is
applied to the study of the atmospheric dispersion of wet cooling tower plumes. Since we did not find any wind
tunnel experiment or in-situ measurements of droplet dispersion in an atmospheric turbulent boundary layer
we compared the numerical results with the experiment on passive scalar plume dispersion of Fackrell and
Robins (1982). The simulations are done for two different droplet size distributions (60 lm and 12 lm) and
for two volume fractions (Up = 2 · 10�7 and Up = 2 · 10�3).

Both types of droplets fall to the ground faster than the passive scalar plume. Far from the source, droplets
of 12 lm remain suspended while 60 lm droplets present a maximum concentration at the ground. Even if the
mean concentration of small droplets presents the same mean behavior as a passive scalar plume, differences
can remain for higher order moments. For both types of droplets, even close to the source mass fluxes differ
from the passive scalar plume. Droplet mass flux profiles present a higher negative value close to the ground at
x/H = 0.96, because, even for very small droplets, sedimentation takes place. On the other hand, higher in the
turbulent boundary layer, because of inertia, droplet mass flux profiles have lower peak values. As the droplet
diameter increases this peak value decreases.

When the volume fraction of droplets in the plume is increased, coalescence takes place. Even though
the changes in the size distribution are small, the mean concentration profile is modified. The high volume
fraction plume reaches the ground faster, it is less dispersed and it presents a higher concentration at the
ground. When larger droplets appear in the plume, the mass flux near the ground becomes higher the mass
flux far from the ground decreases because of sedimentation bigger particle inertia, respectively. Even small
changes in the size distribution of a plume of droplets may produce important modification of the plume dis-
persion. Therefore, it is necessarily to describe and model correctly all interaction that may lead to changes in
droplet size.

Further developments will tend to introduce chemical reactions between droplets and evaporation. Another
objective is to unify the LES with particle tracking of droplets, with the LES with passive and reactive scalar
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dispersion as well as with solid particles. This should ultimately provide a physically sound and efficient tool
for computation of atmospheric chemistry and aerosol dispersion and interaction.
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